Bayesian methods in Biomedicine

David Ríos Insua & Simón Rodríguez Santana ICMAT-CSIC

ICMAT Datalab

About us...

- ICMAT Severo Ochoa Excellence Award (3 times)
- Datalab group (https://www.datalab.icmat.es) AXA-ICMAT Chair since 2014
- Framework projects since 2014

Collaborations:

- ITEFI, IMF, CIB, Cajal, CNB, IFS, IIIA, I2SysBio,...
- AIHUB (https://aihub.csic.es/)

Resources + others:

• Open courses: "Intro to ML" and "Bayesian Data Science"

https://datalab-icmat.github.io/courses_stats.html

• HPC (Lovelace) + UAM computational resources (CCC)

Bayes... What else?

35+ years experience in **Bayesian inference** and **decision analysis**

Now, Bayesian ML or Bayesian Data Science

- 1. Better apportioning of **uncertainty sources**, including prior (and adversarial info)
- 2. Predictions based on **predictive distributions**
- 3. Coherent **integration** within a **decision making** framework
- 4. More **robust inferences** and **decisions** (even in hostile environments)

Complex applications (including biomed) motivating new methodology in Bayesian inference & DA

Vignette 1: Apportioning uncertainty (CVDs)

Vignette 1: CVDs (apportioning uncertainty)

Some context (in Europe):

- CVD are **leading death cause**
 - \circ 3.9 millions deaths per year
 - 45% of all deaths
 - Annual CVD treatment > 210 billion €

IMPORTANT: CV risk prediction for **CVD management and control**. 90% lifestyle induced

Approach and objectives

Bayesian network (BN) implementation

- Health assistance company annual checks (2012-2016)
- Mod. and non-mod. CVRFs and medical conditions + *census information*
- Large dataset (>200K) + expert knowledge to build underlying model

BN model provides:

- Interpretable inference and prediction on CVRFs
- **Decision-support tool** to suggest diagnosis, treatment, policy, and research actions

Bayesian network

Learned network including expert modifications

 \implies 15 edges added and 7 reversed

Probability tables estimated from Multinomial-Dirichlet models

- Predictions: posterior means
- Hypothesis tests: complete distribution

 $p(v_1, \dots, v_{13}) = [p(v_1)p(v_2)p(v_3 | v_1, v_8)p \\ (v_4 | v_1, v_2, v_3, v_5, v_6, v_8)] \\ \times [p(v_5 | v_2, v_6, v_8)p(v_6 | v_1, v_2, v_7, v_8)p(v_7 | v_2) \\ p(v_8 | v_1, v_2)p(v_9 | v_1, v_7, v_{10}, v_{11})p(v_{10} | v_1, v_3)] \\ \times [p(v_{11} | v_5, v_6, v_7)p(v_{12} | v_1, v_2, v_3, v_6, v_7, v_8) \\ p(v_{13} | v_1, v_2, v_6)],$

Therapies through influential findings

Individual:

Sex=Male, Age=(44,54], Edu=3, SeC=3, BMI=Obese, PA=Inactive, Smok=F, SD=Short, Anxiety=Yes, Depression=No

• **Prob. of developing Hypertension = 45.63%**

MCVRF	Level	Probability	
BMI	Normal	11.30	
Physical activity	Regularly active	34.57	
Sleep	Normal	39.69	
Anxiety	No	37.02	

- Priority should be to **improve BMI**.
- If all the MCRF are improved, prob. decreases to **4.80%**

GeNie model (Academic use) <u>https://datalab-icmat.github.io/software.html</u>

Vignette 2: DIGIVERT (predictive distributions)

Vignette 2: DIGIVERT (predictive distributions)

Molecular design problem

- Designing new molecules is **time** and **resource intensive**
- Old approach: Expert proposal + synthesis + measure candidates in vitro
- *Soon-to-be-old* way: High throughput virtual screening (HTVS)

AI assisted *de-novo* design \rightarrow Automatically proposing novel *chemical structures* that *optimally satisfy desired properties*

De-novo molecular design

(a)

Many (*many*) models:

- **10**² (maybe **10**³)
- Expertise important to navigate them

Partial picture: http://www.vls3d.com/index.php

Neural-network based:

Super popular, can be hard to use

- Bayesian optimization
- New promising compounds

Vignette 3: AMLARA (robustness)

Vignette 2: AMLARA (robustness)

ML meets security:

Gallego, DRI (2022), Rodríguez Santana et al. (2022)

Bayesian robust image classification

Adversarial Risk Analysis framework

Vignette 4: ONCOSCREEN CRC (coherent dec.)

Vignette 4: ONCOSCREEN CRC (coherent dec.)

ONCOSCREEN

- EU Mission: Cancer (2023-2026)
- 39 partners (Med devices, CRC specialists, AI-IT, Health Econ, Insur., Regulators, Patient Assoc, CROs,...) covering the whole CRC-value chain
- More info: https://oncoscreen.health/

CRC:

- 12.4% of cancer deaths
- Only 14% in EU participate in screening programs (colonoscopy not so nice)
- 4 new screening devices promised and how to incentivise them

Currently on its first steps...

1- Predictive model

2- Decision model Sex Alcohol 2 Age Screen CRC Result 17 Treatment 17 Impact Utlity

3- Incentive model

Queries or questions, reach out!

Collabs welcome!

david.rios@icmat.es

simon.rodriguez@icmat.es

ICMAT Datalab https://www.datalab.icmat.es

Data and preprocessing

- Annual health (2012 2016) assessments from health assistance company
- Complemented with *census information*, inferring:
 - Socioeconomic status
 - Educational level
- Removal of outliers, duplicates, misrecorded and missing values
- Retain the most recent assessment of each individual

⇒ Final dataset contains **205,087 health assessments**

Relevant variables

	Variables in	model.	
4 Non-modifiable CVRFs	Variable	Definition	Levels
	v_1	Sex Age	{female, male} (24.34], (34.44], (44.54], (54.64], (64.74]
6 modifiable CVRFs	V3	Education level	{1,2,3}
	V4	Socioeconomic status	{1,2,3}
	v_5	Body mass index	{underw., normal, overw., obese}
	v_6	Physical activity	{insufficiently active (1), regularly active (2)}
	V7	Sleep duration	{short, normal, excessive}
	V8	Smoker profile	{non-smoker, ex-smoker, smoker}
3 Medical conditions	v ₉	Anxiety	{yes, no}
	v10	Depression	{yes, no}
	v11	Hypertension	{yes, no}
	v12	Hypercholesterolemia	{yes, no}
	v13	Diabetes	{ves, no}

Table 1

CVRFs = Cardiovascular risk factors

Diagnosis and evidence propagation Extra

Example: Individual/ set of individuals with Age 245, BMI=0verweight, SD 26, Anxiety=Yes

$$\begin{aligned} &\Pr(v_{11} = y \mid v_1 = \text{ male}, v_2 \ge 45, v_5 = \text{ overw.}, v_6 = 1, \\ &v_7 = <6h, v_9 = y) \\ &= \frac{\Pr(v_1 = \text{ male}, v_2 \ge 45, v_5 = \text{ overw.}, v_6 = 1, v_7 = <6h), v_9 = y, v_{11} = y)}{\Pr(v_1 = \text{ male}, v_2 \ge 45, v_5 = \text{ overw.}, v_6 = 1, v_7 = <6h), v_9 = y)} \end{aligned}$$

- = 25.26 % > 15.05% (marginal probability)
- Individual should be informed of a high probability of having hypertension.

Table 4

Probability of developing hypertension given various patient conditions for age greater than 44, poor sleeping level and anxiety.

BMI	Physical activity	Probability Male	Probability Female
Overw.	1	25.26	26.34
Overw.	2	19.79	20.70
Obese	1	45.54	46.95
Obese	2	34.49	35.78
Overw., obese	1	32.85	33.82
Overw., obese	2	22.90	23.85

Positive impact of PA

Limitations of the study

- The dataset has different structure to Spanish population (healthy worker effect)
- Some data were self-reported
- No explicit data concerning diet (except for alcohol)
- (...in the end) Only predictive claims, not causal

De-novo molecular design

Many (many) models:

• **10**² (maybe **10**³)

• Expertise important to navigate them

Partial picture: http://www.vls3d.com/index.php

Neural-network based:

Super popular, can be hard to use

- Bayesian optimization
- New promising compounds

Meaningful exploration

optimized property maximization search

Average distance between ZINC molecules latent space(19.66)

