Analysis of SARS-CoV-2 Spike Protein Mutations with Logistic Regression

Simón Rodríguez Santana, Roi Naveiro, Daniel García Rasines, Paula Ruiz-Rodriguez, Miguel Álvarez-Herrera, David Ríos Insua, Nuria E. Campillo, Eugenia Ulzurrun, Mireia Coscollá

ICMAT Datalab

About us...

• ICMAT - Severo Ochoa Excellence Award (3 times)

Campillo

- Datalab group (<u>https://www.datalab.icmat.es</u>) AXA-ICMAT Chair since 2014
- Framework projects since 2014

Ríos

Guevara

García

Rodríquez

• Collaboration with I2SysBio, CBM & CIB Margarita Salas (PTI Salud Global)

Naveiro

Which mutations (individually or by pairs) of the COVID-19 genome are associated to important aspects of the infection?

- Severity Hospitalization (possibly death)
- Vaccine failure **Breakthrough** (full vacc. + hosp.)

Which mutations (individually or by pairs) of the COVID-19 genome are associated to important aspects of the infection?

- Severity **Hospitalization** (possibly death)
- Vaccine failure **Breakthrough** (full vacc. + hosp.)

Support *complex tasks*:

- → Locate problematic mutations (*prevention*)
- \rightarrow Extra information (*policy selection*)

(among others)

Data

- Data sources: FISABIO (8.534) + GM hospital (386)
- Covariates: sex, age, sample month and genomic sequences (AA)
 - Hospitalization study: vaccination status as covariate

Preprocessing

- Clean the dataset:
 - \circ Remove rows with >10% of missing values
 - \circ Patients with partial information samples
 - \circ Samples before 01/01/2021
 - Genome positions without mutations (at least >1 type of AA)
- Full preprocessing only for Spike protein
 - \rightarrow 331 Spike genome positions (out of 1.272)

 \rightarrow 5.928 cases (out of 8.920)

~ Laplace prior (*sparsity*)

logit[
$$P(Y = 1 | \mathbf{X})$$
] = $\beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$

~ Laplace prior (*sparsity*)

$$\operatorname{logit}[P(Y=1|\mathbf{X})] = \beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^p \gamma_i ||\beta_i||_2$$$$

- Negative log-likelihood loss function
- *L1* reg. + *k*-fold CV regularization strength

~ Laplace prior (*sparsity*)

$$\operatorname{logit}[P(Y=1|\mathbf{X})] = \beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^p \gamma_i ||\beta_i||_2$$$$

- Negative log-likelihood loss function
- *L1* reg. + *k*-fold CV regularization strength

~ Laplace prior (*sparsity*)

$$\operatorname{logit}[P(Y=1|\mathbf{X})] = \beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^p \gamma_i ||\beta_i||_2$$$$

- Negative log-likelihood loss function
- *L1* reg. + *k*-fold CV regularization strength

~ Laplace prior (*sparsity*)

$$\operatorname{logit}[P(Y=1|\mathbf{X})] = \beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^p \gamma_i ||\beta_i||_2$$$$

- Negative log-likelihood loss function
- *L1* reg. + *k*-fold CV regularization strength

~ Laplace prior (*sparsity*)

HPC

_10

Log λ

-7

• Logistic regression with Hierarchical Group Lasso regularization

$$\operatorname{logit}[P(Y=1|\mathbf{X})] = \beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i< j} X_{i:j} \beta_{i:j}$$
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^p \gamma_i ||\beta_i||_2$$

- Negative log-likelihood loss function
- *L1* reg. + *k*-fold CV regularization strength

Strong hierarchy:

Overparametrization:

0.20

0.18

 $\beta_{i:j} \neq 0 \Rightarrow \beta_i \neq 0, \beta_j \neq 0$

For each position, the sum of its main effects is 0, as well as for its interaction coefficients

Hospitalization results

Hospitalization results

215D 678P 678I 215G 215Y

Breakthrough results

Breakthrough results

Conclusions

- Several novel interaction found, some of interest
- Effects of well-known mutations are enhanced or diminished by mutations in other positions
 - Example: **T478K** vs. **478T** in combination with **25P** (hosp.)
- Further analysis:
 - Remaining parts of the genome (ongoing)
 - Characterization of the effects of the preprocessing pipeline
 - Augment with other data sources (available)

Conclusions

- Several novel interaction found, some of interest
- Effects of well-known mutations are enhanced or diminished by mutations in other positions
 - Example: **T478K** vs. **478T** in combination with **25P** (hosp.)
- Further analysis:
 - Remaining parts of the genome (ongoing)
 - Characterization of the effects of the preprocessing pipeline
 - Augment with other data sources (available)

Thanks!

Reach out: simon.rodriguez@icmat.es

