Analysis of SARS-CoV-2 Spike Protein Mutations with Logistic Regression

Simón Rodríguez Santana, Roi Naveiro, Daniel García Rasines, Paula Ruiz-Rodríguez, Miguel Álvarez-Herrera, David Ríos Insua, Nuria E. Campillo, Eugenia Ulzurrun, Mireia Coscollá
ICMAT Datalab

About us...

- **ICMAT** - Severo Ochoa Excellence Award (3 times)
- **Datalab group** (https://www.datalab.icmat.es) AXA-ICMAT Chair since 2014
- Framework projects since 2014

- Collaboration with **I2SysBio, CBM & CIB Margarita Salas** (PTI Salud Global)
Objective

Which mutations (individually or by pairs) of the COVID-19 genome are associated to important aspects of the infection?

○ Severity - *Hospitalization* (possibly death)

○ Vaccine failure - *Breakthrough* (full vacc. + hosp.)
Objective

Which mutations (individually or by pairs) of the COVID-19 genome are associated to important aspects of the infection?

○ Severity - Hospitalization (possibly death)

○ Vaccine failure - Breakthrough (full vacc. + hosp.)

Support complex tasks:

→ Locate problematic mutations (prevention)
→ Extra information (policy selection)
Data

- Data sources: FISABIO (8,534) + GM hospital (386)
- Covariates: sex, age, sample month and genomic sequences (AA)
 - Hospitalization study: vaccination status as covariate

![Graphs showing hospitalization status and vaccination status over time]
Preprocessing

- Clean the dataset:
 - Remove rows with >10% of missing values
 - Patients with partial information samples
 - Samples before 01/01/2021
 - Genome positions without mutations (at least >1 type of AA)

- Full preprocessing only for Spike protein
 - 331 Spike genome positions (out of 1.272)
 - 5.928 cases (out of 8.920)
Model

- Logistic regression with Hierarchical Group Lasso regularization

\[
\text{logit}[P(Y = 1|X)] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i<j} X_{i:j} \beta_{i:j}
\]

\sim \text{ Laplace prior (sparsity)}
Model

- Logistic regression with Hierarchical Group Lasso regularization

\[
\text{logit}[P(Y = 1|\mathbf{X})] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i<j} X_{i:j} \beta_{i:j}
\]

\[
\text{argmin}_\beta \mathcal{L} (\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^{p} \gamma_i \| \beta_i \|_2
\]

- Negative log-likelihood loss function
- \textit{L1} reg. + \textit{k}-fold CV regularization strength

\sim \text{Laplace prior (sparsity)}
Model

- Logistic regression with Hierarchical Group Lasso regularization

\[\text{logit}[P(Y = 1|X)] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i<j} X_{i:j} \beta_{i:j} \]

\[\text{argmin}_\beta \mathcal{L}(Y, X, \beta) + \lambda \sum_{i=1}^{p} \gamma_i \| \beta_i \|_2 \]

- Negative log-likelihood loss function
- \(L1 \) reg. + \(k \)-fold CV regularization strength
Model

- Logistic regression with Hierarchical Group Lasso regularization

\[
\text{logit}[P(Y = 1|X)] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i<j} X_{i:j} \beta_{i:j}
\]

\[
\arg\min_{\beta} \mathcal{L}(Y, X, \beta) + \lambda \sum_{i=1}^{p} \gamma_i \| \beta_i \|_2
\]

- Negative log-likelihood loss function
- \textit{L1} reg. + k-fold CV regularization strength

\sim \text{Laplace prior (sparsity)}
Model

- Logistic regression with Hierarchical Group Lasso regularization

\[
\text{logit}[P(Y = 1|X)] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i<j} X_{i:j} \beta_{i:j}
\]

\[
\text{argmin}_\beta \mathcal{L}(Y, X, \beta) + \lambda \sum_{i=1}^{p} \gamma_i \|\beta_i\|_2
\]

- Negative log-likelihood loss function
- \textit{L1} reg. + k-fold CV regularization strength
Model

- Logistic regression with Hierarchical Group Lasso regularization

$\text{logit}[P(Y = 1|X)] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i<j} X_{i:j} \beta_{i:j}$

$\arg\min_\beta \mathcal{L}(Y, X, \beta) + \lambda \sum_{i=1}^{p} \gamma_i \| \beta_i \|_2$

- Negative log-likelihood loss function
- $L1$ reg. + k-fold CV regularization strength

Strong hierarchy:

$\beta_{i:j} \not= 0 \Rightarrow \beta_i \not= 0, \beta_j \not= 0$

Overparametrization:

For each position, the sum of its main effects is 0, as well as for its interaction coefficients
Hospitalization results
Hospitalization results
Breakthrough results
Breakthrough results
Conclusions

- Several novel interaction found, some of interest
- Effects of well-known mutations are enhanced or diminished by mutations in other positions
 - Example: T478K vs. 478T in combination with 25P (hosp.)
- Further analysis:
 - Remaining parts of the genome (ongoing)
 - Characterization of the effects of the preprocessing pipeline
 - Augment with other data sources (available)
Conclusions

- Several novel interaction found, some of interest
- Effects of well-known mutations are enhanced or diminished by mutations in other positions
 - Example: T478K vs. 478T in combination with 25P (hosp.)
- Further analysis:
 - Remaining parts of the genome (ongoing)
 - Characterization of the effects of the preprocessing pipeline
 - Augment with other data sources (available)

Thanks!
Reach out: simon.rodriguez@icmat.es